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Abstract. The product of an axialvector and a scalar current and its relation to the chiral-odd distribution
function h1 is discussed in the framework of the renormalon approach. Using a bag-model calculation for
h1, we calculate its intrinsic uncertainty due to renormalon poles. The result is given as a function of
Bjorken-x as well as for the first moments separately.

PACS. 12.38.Lg Other nonperturbative calculations – 14.20.Dh Protons and neutrons – 13.85.Qk Inclusive
production with identified leptons, photons, or other nonhadronic particles

1 Introduction

While in totally inclusive deep inelastic scattering (DIS)
the quark chirality is conserved up to terms proportional
to the quark masses, this is not the case in the Drell-Yan
process. Here a quark-antiquark-pair is annihilated to a
virtual photon, so that in the cross-section the quarks
originating and ending in the same nucleon may carry
different chirality. This gives raise to chiral odd distribu-
tion functions, which first appeared in the discussion of
the transverse polarized Drell-Yan process [1]. This chiral
odd distribution function is defined by a twist-2 operator
and is called the transversity distribution h1. Unlike the
helicity asymmetry g1, h1 has no partonic interpretation
in the chiral basis. Changing to the transversity basis [2]
g1 looses its partonic interpretation and h1 gets one in-
stead. It is interpreted as the probability to find a quark
in a transversely polarized nucleon in an eigenstate of the
transverse Pauli-Lubanski vector with eigenvalue +1/2,
minus the same with eigenvalue −1/2.

Some experiments are planned to measure h1 in the
near future, especially at RHIC (BNL) and possibly by the
COMPASS experiment at CERN — for a general review
of the possibilities for measuring the transversity distri-
bution see [3] —, so that there is need for theoretical pre-
dictions for h1. The anomalous dimension which we will
also consider in this contribution was calculated in [4].
In the nonrelativistic quark models g1 and h1 are iden-
tical. The positivity of parton probabilities implies the
inequality |h1(x)| ≤ f1(x) and the Soffer inequality [5]
2 |h1(x)| ≤ f1(x) +g1(x). A bag model calculation predict
|h1(x)| ≥ |g1(x)|, which may be correct in general [6]. For
medium large Bjorken-x there exists a QCD-sum rule cal-
culation [7], predicting a much smaller value for h1 than
the already mentioned bag model calculation.

We wish to contribute to this theoretical discussion by
calculating the intrinsic uncertainty of the perturbative se-
ries due to IR-renormalon poles. We choose to discuss the
product of an axialvector and a scalar current, which in
first order of perturbation theory is generating the chiral-
odd distribution function h1. Thus the intrinsic uncer-
tainty of the current product is a systematic error for the
experimental measurement of h1.

2 Definitions

2.1 Forward-scattering-amplitude

The definition of h1 in terms of an operator matrix element
reads [1,6,7]:

i

2

∫
dy+

2π
eiy+x

〈
p, s
∣∣ψ(0)σµνγ5ψ(y+n)

∣∣p, s〉
= h1(x, q2) (s⊥µpν − s⊥νpµ)

+hL(x, q2)m2 (pµnν − pνnµ) (s · n)

+h3(x, q2)m2 (s⊥µnν − s⊥νnµ) (1)

where x = −q2/(2p · q) is the Bjorken variable, nν is a
light cone vector with n2 = 0 of dimension (mass)−1, p is
the proton momentum and s is the proton spin. p2 = m2,
s2 = −1 and p · s = 0. p · n = 1 and the transverse
part of the spin vector is defined by the decomposition
sµ = (s · n)pµ + (s · p)nµ + s⊥µ. The contraction of this
expression with the light cone vector nν gives:

i

2

∫
dy+

2π
eiy+x

〈
p, s
∣∣ψ(0)σµνnνγ5ψ(y+n)

∣∣p, s〉
= h1(x, q2)s⊥µ − hL(x, q2)m2nµ(s · n). (2)
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It is possible to relate the transversity distribution h1 to
the imaginary part of the forward scattering amplitude on
the leading twist-level [7]:

Tµ =
i

2

∫
d4y eiqy

〈
p, s
∣∣T (jµ5(y)jS(0) + jS(y)jµ5(0))

∣∣p, s〉.
(3)

Here jµ5(y) = ψ(y)γµγ5ψ(y) is a axial-vector current,
jS(y) = ψ(y)ψ(y) is a scalar current and T denotes the
time-ordered product. Summation over flavor indices is
assumed. Equivalently one may use a time-ordered prod-
uct of a vector-current jµ(y) = ψ(y)γµψ(y) and a pseu-
doscalar current j5(y) = ψ(y)γ5ψ(y).

To prove the relation between this definition and the
operator-definition (1) of the transversity distribution, one
has to decompose the forward scattering amplitude into
its Lorentz-structures using the conservation of either the
axial-vector or the vector current. The conservation of the
axial-vector current is correct only for the flavor nonsinglet
current, so that the proof remains correct up to an order
αs-correction only. As the vector-current is conserved in-
dependently of the flavor combination under consideration
we prefer the definition

Tµ =
i

2

∫
d4y eiqy

〈
p, s
∣∣T (jµ(y)j5(0) + j5(y)jµ(0))

∣∣p, s〉.
(4)

To find the realation to h1 the current product has to be
expanded collecting the terms with one incoming quark,
one outgoing quark and one quark propagator S(y) =
i 6∂ ∆(y), where ∆ is the Pauli-Jordan function. The Pauli-
Jordan function is expanded on the light cone and only the
leading term is taken into account. The imaginary part
of the s-channel-term of the forward scattering amplitude
takes the form:

ImTµ =

− 1
2π

∫
d4y eiqy

〈
p, s
∣∣ : ψ(y)σµνyνiγ5ψ(0) :

∣∣p, s〉δ′(y2)

+
1

2π

∫
d4y eiqy

〈
p, s
∣∣ : ψ(0)σµνyνiγ5ψ(y) :

∣∣p, s〉δ′(y2). (5)

Here σµν = i
2 [γµ, γν ] and δ′(y2) =

(
∂/∂(y2)

)
δ(y2). Sub-

stituting light cone variables y− = y0 − y3 and 2y+ =
y0 + y3, integrating by parts, using translation invariance,
and putting this expression on the light cone by choosing
y such that y2 = 0, one gets

ImTµ = − i
2

∫
dy+

2
eiy+x〈

p, s
∣∣ : ψ(0)σµνnνγ5ψ(y+n) :

∣∣p, s〉. (6)

This result has the form of (2), so that one gets a relation
between the s-channel-part of the forward scattering am-
plitude and the transversity distribution by collecting the
terms proportional to s⊥µ:

h1(x)s⊥µ =
1
π

ImTµ|s⊥µ . (7)

2.2 Light cone expansion and moments

The light cone expansion of the forward scattering ampli-
tude may be writen as:

Tµ|s⊥µ = 2s⊥µ
∞∑
m=0

Cm

(
Q2

µ2
, αs

)
Am(µ2)ωm+1

+higher twist (8)

where ω = 1/x. Am are the reduced matrix elements of
the local twist-2 operators relevant for h1:〈

p, s
∣∣ψσλ{ρiγ5iD

µ1 · · · iDµm}ψ
∣∣p, s〉 =

2Am(sλp{ρ − pλs{ρ)pµ1 · · · pµm}ψ − traces. (9)

The brackets denote total symmetrization of all included
indices. The symmetrization and the subtraction of the
traces are necessary to extract the leading twist part of
the matrix element. The moments of h1 have to be defined
as Mm = CmAm to get the general expression:

2s⊥µMn =
1
π

∫ 1

0

dxxn (ImTµ(x) + (−)nImTµ(−x))|s⊥µ .
(10)

Using (7) the moments become:

Mn =
1
2

∫ 1

0

dxxn (h1(x) + (−)nh1(−x)) (11)

for n = 0, 1, . . . This result coincides with the expression
found by Jaffe and Ji [6].

The operators in (9) have a well defined behaviour un-
der charge conjugation: they are C-odd for even n and
C-even for odd n. This change in sign corresponds to the
relative sign of h1(x) and h1(−x) in the moments (11). To
obtain the correct relation between the antiquark and the
quark transversity distribution one may look at the first
moment:

M0 =
1
2

∫ 1

0

dx (h1(x) + h1(−x)) . (12)

As this expression is odd under charge conjugation, the
antiquark transversity distribution should be h1(x) =
−h1(−x). It follows that the contributions of sea quarks
cancel for even moments in general and only the valence
quarks contribute, while the sea quark contributions add
for odd moments.

3 Renomalon ambiguity of jµ5jS

We are calculating the IR-renormalon contribution [8] to
the structure function defined by (3) and (7). As its twist-2
part is related to the transversity distribution h1, the IR-
renormalon contribution may be interpreted as intrinsic
ambiguity of the perturbative expansion to h1. This inter-
pretation is justified by the fact, that the calculation of the
renormalon ambiguity involves only one loop corrections
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using a resummed coupling. The correspondence of the
current product and the nonsinglet distribution function
h1 is exact up to first order in αs, so that this correspon-
dence applies for the ambiguities in a one loop calculation
also. Nevertheless one should be aware, that we calculate
the renormalon uncertainty of the current product and
not of h1, so that we give only an estimate for the intrin-
sic uncertainty of h1.

Perturbative series in QCD are asymptotic ones, im-
plying that the radiative corrections of higher and higher
orders get smaller only up to a finite order m0 and di-
verge for larger orders in αs. The uncertainty of the series
is of the order of the smallest contribution and has the
form of a power correction [9], so that the QCD pertur-
bative series on the lowest twist level may be written as
(as = αs/(4π)):

Cn
(
Q2 = µ2, as

)
=

m0∑
k=0

B(k)
n aks + C(1)

n

Λ2
Ce
−C

Q2

+C(2)
n

Λ4
Ce
−2C

Q4
+O

(
1
Q6

)
. (13)

Note that the 1/Q term is not present in the above ex-
pression. It was shown for Drell-Yan on the one gluon ex-
change level that these corrections are cancelled by higher
order perturbative contributions [10] and that the 1/Q2-
term is the leading power correction. The uncertainty may
be determined by the exact calculation of the perturba-
tive corrections up to the order m0(Q2), which is a very
demanding procedure.

Instead we calculate the forward scattering amplitude
(3) on the one gluon exchange level, using a Borel trans-
formed effective gluon propagator [11]:

B1/as [asD
ab
µν(k)](u) = δab

gµν − kµkν
k2

k2

(
µ2e−C

−k2

)β0u

. (14)

C corrects for the renormalization scheme dependence
(C = − 5

3 for MS-scheme), µ is the renormalization scale,
and u is the Borel parameter. The effective gluon propa-
gator is constructed by replacing the coupling as by the
running coupling constant, that is by a resummation of all
quark- and gluon-loop insertions in one gluon-propagator.
In the first order of as this propagator leads to exact re-
sults. Looking at higher order corrections the restriction
on one exchanged effective gluon corresponds to the large
Nf -limit [12], where Nf denotes the number of quark fla-
vors. The next-to-leading Nf -terms are approximated by
naive-nonabelianization (NNA) [13]. This corresponds to
the replacement of the one loop QED-beta-function by
the QCD-beta-function β0 = 11− 2

3Nf or equivalently to
Nf → Nf − 33

2 . The quality of this approximation has
been checked [14,15] for the unpolarized structure func-
tions F2 and FL and for the polarized structure function
g1 by comparing the NNA perturbative coefficients with
the known exact ones. This comparison gave very reason-
able results for FL and g1, while the results for F2 are less
convincing.

Formally, asymptotic freedom is destroyed in the large
Nf -limit. One should recognize that the large Nf -limit
is used to select graphs and has to be understood as a
definition of an approximation procedure. At the end Nf
will be set to 4, so that β0 stays in an asymptotic free
region. This procedure is technically analogous to the use
of the large Nc-limit [16], even if the physical content is
different.

In the Borel plane the ambiguity of the truncated per-
turbative series in (13) is reflected in IR-renormalon poles,
which hinder an unambigous inverse Borel transforma-
tion. This ambiguity of the perturbative series may be
interpreted as twist-4 contribution of the structure func-
tion defined by (3) and (7). Such estimations of higher
twist corrections gave very reasonable results [17,18,14,
15]. However the transversity distribution is defined by
pure twist-2 operators. This means that the renormalon
ambiguity we are calculating is not used to give an esti-
mate of a twist-4 part but is an intrinsic ambiguity of the
whole twist-2 perturbative series for h1.

So let us calculate the Borel-transformed s-channel for-
ward scattering amplitude Tµ in (3) on the one gluon ex-
change level using the effective gluon propagator (14). The
result is a series in ω = 1/x which has to be compared with
(8)

B 1
as

(Tµ)
∣∣∣
s⊥µ

= s⊥µ

∞∑
m=0

B 1
as

(
Cm

(
Q2

µ2
, as

))
×Am(µ2)ωm+1 + higher twist (15)

where the reduced matrix element was determined at the
tree level to be An = 1 and a factor 2 is missing because
the exchange graphs are not included in this expression
due to the restriction on the s-channel contribution. We
obtain for the Borel transformed Wilson coefficient:

B 1
as

[
Cn

(
Q2

µ2
, as

)]
(s) = CF

(
µ2e−C

Q2

)s
{

1
s

[
5

1 + s
− Γ (1 + s+ n)
Γ (1 + s)Γ (1 + n)

+
n∑
k=1

Γ (s+ k)
Γ (1 + s)Γ (1 + k)

4k
1 + s+ k

]
+

1
1− s

[
4

1 + s
− 2Γ (1 + s+ n)
Γ (1 + s)Γ (1 + n)

+
n∑
k=1

Γ (s+ k)
Γ (1 + s)Γ (1 + k)

4(1 + k)
1 + s+ k

]
+

1
2− s

[
1

1 + s
+

Γ (1 + s+ n)
Γ (1 + s)Γ (1 + n)

+
n∑
k=1

Γ (s+ k)
Γ (1 + s)Γ (1 + k)

2
1 + s+ k

]}
(16)

where s = β0u replaces the Borel parameter u. We find
IR-renormalon poles at s = 0, 1, 2, as usual for DIS.
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This is not a general statement as in the case of e+e−-
fragmentation one obtains an infinite sum of poles with
even powers of 1/Q [17]. The Wilson coefficient has still
to be renormalized.

In the Borel-plane the ambiguity C
(k)
n of the pertur-

bative series in (13) can be rediscovered as ambiguity of
the inverse Borel transformation due to the IR-renormalon
poles or in other words as the imaginary part of the
Laplace integral:

∑
k

C(k)
n

(
Λ2
Ce
−C

Q2

)k
=

1
πβ0

Im
∫ ∞

0

ds e−s/(β0as)

×B 1
as

[
Cn

(
Q2

µ2
, as

)]
(s). (17)

We get

C(1)
n = ±2CF

β0

(
3 + n− 2

1 + n
− 2

2 + n
− 2

n∑
k=1

1
k

)

C(2)
n = ±CF

β0

(
3 +

1
2

(1 + n)(4 + n)

− 2
1 + n

− 2
2 + n

− 2
3 + n

− 2
n∑
k=1

1
k

)
. (18)

The signs of these twist-2 uncertainty terms remain un-
determined, because it is not clear in which way the pole
should be circumvented in the Laplace integral.

In the following the ambiguity of the Laplace integral
is interpreted as an intrinsic uncertainty of the twist-2
transversity distribution. The ratio of the moments of this
uncertainty hIR1 and the moments of h1 is expanded up to
the order as/Q2

M IR
n =

C
(1)
n

Λ2e−C

Q2 +O
(
as
Q2 ,

1
Q4

)
∑m0
k=0B

(k)
n aks + C

(1)
n

Λ2e−C

Q2 +O
(
as
Q2 ,

1
Q4

)Mn

≈
[
C

(1)
n

B
(0)
n

Λ2e−C

Q2
+O

(
as
Q2

,
1
Q4

)]
Mn. (19)

Here the truncated perturbative series (13) was used for
the moments of h1. The lowest order twist-2 perturbative
coefficient B(0)

n is determined by the tree-graph and is 1.
As an illustration we will insert for Mn a theoretical model
prediction for the transversity distribution.

From (18) and (19) we can calculate the IR-renormalon
uncertainty Un for each moment, where∫ 1

0

dxxn
(
h1(x)− (−)nh1(x)

)
= A(0)

n (1± Un) +O(as),

(20)
where A

(0)
n denotes the leading contribution to the mo-

ments. At Q2 = 4 GeV2 and with ΛMS = 200 MeV,
Nf = 4, CF = 4

3 and β0 = 11− 2
3Nf we find:∫ 1

0

dx
(
h1(x)− h1(x)

)
= A

(0)
0 +O(as),

Fig. 1. The bag model calculation [6] for h1 − h1 (full line)
and the IR-renormalon ambiguity evaluated at Q2 = 4 GeV2

multiplied by a factor of 10 (dotted line). There are two changes
in sign at x ≈ 0.25 and x ≈ 0.4. The ambiguity was added
and subtracted from the bag model calculation (dashed lines),
(ΛMS = 200 MeV, and Nf = 4)

∫ 1

0

dxx
(
h1(x) + h1(x)

)
= A

(0)
1 (1± 0.0057) +O(as),∫ 1

0

dxx2
(
h1(x)− h1(x)

)
= A

(0)
2 (1± 0.014) +O(as),∫ 1

0

dxx3
(
h1(x) + h1(x)

)
= A

(0)
3 (1± 0.024) +O(as),∫ 1

0

dxx4
(
h1(x)− h1(x)

)
= A

(0)
4 (1± 0.036) +O(as).

(21)

We get no IR-renormalon uncertainty for the first mo-
ment. The IR-renormalon uncertainty becomes larger for
higher moments, so that we expect larger ambiguities
of the transversity distribution in the region of larger
Bjorken-x. For higher moments the contribution of h1 can
be considered as marginal, so that the above ambigui-
ties should remain approximately correct for

∫ 1

0
dxxnh1(x)

with n > 2. This is of course not the case for the first and
the second moment (n = 1). A rough estimate gives rise
to a sea-quark effect of the same order as the calculated
uncertainty.

From the moments in (19) the valence quark transver-
sity distribution h1−h1 may be reconstructed as a function
of Bjorken-x. The result is a convolution integral:

hIR1 (x,Q2)− hIR1 (x,Q2) =
Λ2e−C

Q2

∫ 1

x

dy

y
C̃(1)(y)

×
{
h1

(
x

y

)
− h1

(
x

y

)}
(22)
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Fig. 2. The relative magnitude of the IR-renormalon ambigu-
ity with respect to the bag model calculation [6] for h1 − h1

(ΛMS = 200 MeV, Q2 = 4 GeV2 and Nf = 4)

where C̃(k)(x) is defined by

C(k)
n =

∫ 1

0

dxxnC̃(k)(x) (23)

and we find for the two first IR-renormalon ambiguities:

C̃(1)(x) = ±2CF
β0

{
2

(1− x)+
+ 3δ(x− 1)

−δ′(x− 1)− 2x− 2
}

C̃(2)(x) = ±2CF
β0

{
1

(1− x)+
+

5
2
δ(x− 1)

−δ′(x− 1) +
x

4
δ′′(x− 1)− x2 − x− 1

}
. (24)

The IR-renormalon ambiguities shown in Fig. 1 are cal-
culated using the bag model calculation of [6] for h1(x).
The large Nf -limit is most reliable in the region of medium
large Bjorken-x. For small x the neglection of multiple
gluon exchange is no longer justified. On the other hand
the influence of the hadronic spectrum makes a pure per-
turbative calculation insufficient for large x. In the re-
gion of best accuracy (0.2 < x < 0.45) the uncertainty
does not become bigger than 1% (see Fig. 2). One can ex-
pect a sizeable IR-renormalon uncertainty of up to 10%
for 0.5 < x < 0.6.

4 Conclusions

We gave an estimate of the IR-renormalon ambiguity for
the valence quark transversity distribution. The ambiguity

is smaller than 1% in the region of best accuracy of the
NNA-approximation. For x ≈ 0.6 this systematic error
becomes important reaching about 10%. Thus the renor-
malon uncertainty should be taken into accout when in-
terpreting measurements of h1 in this region of x.
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also the MPI für Kernphysik in Heidelberg for support.
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